Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2312215, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497820

ABSTRACT

The systematic structure modification of metal oxides is becoming more attractive, and effective strategies for structural tunning are highly desirable for improving their practical color-modulating energy storage performances. Here, the ability of a stoichiometrically tuned oxide-hydroxide complex of porous vanadium oxide, namely [V2 O2+ξ (OH)3-ξ ]ξ = 0:3 for multifunctional electrochromic supercapacitor application is demonstrated. Theoretically, the pre-optimized oxide complex is synthesized using a simple wet chemical etching technique in its optimized stoichiometry [V2 O2+ξ (OH)3-ξ ] with ξ = 0, providing more electroactive surface sites. The multifunctional electrode shows a high charge storage property of 610 Fg-1 at 1A g-1 , as well as good electrochromic properties with high color contrast of 70% and 50% at 428 and 640 nm wavelengths, faster switching, and high coloration efficiency. When assembled in a solid-state symmetric electrochromic supercapacitor device, it exhibits an ultrahigh power density of 1066 mWcm-2 , high energy density of 246 mWhcm-2 , and high specific capacitance of 290 mFcm-2 at 0.2 mAcm-2 . A prepared prototype device displays red when fully charged, green when half charged, and blue when fully discharged. A clear evidence of optimizing the multifunctional performance of electrochromic supercapacitor by stoichiometrical tuning is presented along with demonstrating a device prototype of a 25 cm2 large device for real-life applications.

2.
Phys Chem Chem Phys ; 25(3): 1627-1631, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36601877

ABSTRACT

It is always interesting to understand how the interplay between two perturbations, affects any physical process and gets manifested in a semiconductor. Temperature- and wavelength-dependent Raman Spectromicroscopy was performed on heavily-doped Si to reveal an unusual anti-anharmonic effect. Additionally, the energy dispersive behaviour of Fano coupling strength was also studied and its possible interrelation with the observed anti-anharmonic effect was explored. A systematic study revealed that at the different excitation wavelengths, the strength of the Fano interaction was different, where the involved electron-phonon (Fano-Fano-interferon) bound states were counted together with different energies. By understanding how the interplay manifests in terms of the Raman line shape, a method to calculate the Fano-interferon dissociation energy was developed. The slope of the Raman linewidth at different excitation wavelengths with temperature showed a negative temperature coefficient and sign reversal on decreasing the doping concentration. A wavelength-dependent empirical relation is proposed to calculate the required thermal energy, required to dissociate the electron-phonon bound state.

3.
J Phys Chem Lett ; : 5232-5239, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35670640

ABSTRACT

A nonlinear Fano interaction has been reported here which is manifest in terms of a parabolic temperature-dependent phonon decay process observable in terms of a Raman spectral parameter. Temperature-dependent Raman spectroscopic studies have been carried out on heavily and moderately doped crystalline silicon to investigate the behavior of anharmonic phonon decay in semiconductor systems where Fano interactions are present inherently. Systematic study reveals that in heavily doped systems an interferon-mediated decay route exists for cold phonons present at lower temperatures (<475 K) where Fano coupling is stronger and dominates over the typical multiple-phonon decay process. On the other hand, the anharmonic phonon decay remains the predominant process at higher temperatures irrespective of the doping level. Temperature-dependent phonon self-energy has been calculated using experimentally observed Raman line-shape parameters to validate the fact that the nonlinear decay of phonons through interferon mediation is a thermodynamically favorable process at low temperatures.

4.
ACS Phys Chem Au ; 2(5): 417-422, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36855687

ABSTRACT

Excitation wavelength-dependent Raman spectroscopy has been carried out to study electron-phonon interaction (Fano resonance) in multi-layered bulk 2H-MoS2 nano-flakes. The electron-phonon coupling is proposed to be caused due to interaction between energy of an excitonic quasi-electronic continuum and the discrete one phonon, first-order Raman modes of MoS2. It is proposed that an asymmetrically broadened Raman line shape obtained by 633 nm laser excitation is due to electron-phonon interaction whose electronic continuum is provided by the well-known A and B excitons. Typical wavelength-dependent Raman line shape has been observed, which validates and quantifies the Fano interaction present in the samples. The experimentally obtained Raman scattering data show very good agreement with the theoretical Fano-Raman line-shape functions and help in estimating the coupling strength. Values of the electron-phonon interaction parameter obtained, through line-shape fitting, for the two excitation wavelengths have been compared and shown to have generic Fano-type dependence on the excitation wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...